Optimasi Parameter Pemulusan Algoritma Brown Menggunakan Metode Golden Section Untuk Prediksi Data Tren Positif dan Negatif

  • Fiqih Akbari Universitas AMIKOM Yogyakarta
  • Arief Setyanto Universitas AMIKOM
  • Ferry Wahyu Wibowo Universitas AMIKOM
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.29207/resti.v2i1.263
Keywords: Parameter Optimization, DES Brown, Data Trends, Golden Section, T Test

Abstract

Algorithm DES (Double Exponential Smoothing) Brown is a forecasting algorithm used to predict time series data both patterned positive trends and negative trends. However, this algorithm has a weakness in determining the optimum parameter value to minimize forecasting error (MAPE), the parameter value is searched using Golden Section method previously searched manually using repeated experiment. This research uses 60 trend patterned data analyzed for grouping positive and negative trend pattern data which further done forecasting process, evaluation and testing to know what type of data pattern is best. Based on the result, it revealed that optimization parameter yields optimum MAPE value, where parameter value is done forecasting process in positive and negative trend pattern data group yielding average MAPE value equal to 9,73401% (highly accurate) for patterned data positive trend and 15,78467% (good forecast) for negative patterned pattern data. DES Brown forecasting algorithm with parameter optimization method resulted in the approximate value of the original data if the data shows the addition or decrease in value around the average value. Conversely, it will result in a high MAPE value (inaccurate) if the data has a spike in data value periods. From the two groups of MAPE scores, a statistical t test showed that positive trend patterned data (?1) yielded better MAPE average value than negative trend patterned data (?2).

Downloads

Download data is not yet available.

References

[1] Andini, T, D., dan Auristani, P., 2016. Peramalan Jumlah Stok Alat Tulis Kantor di UD ACHMAD JAYA Menggunakan Metode Double Exponential Smoothing. Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA),Vol.10, No.1.
[2] Mahkya, D. A., H. Yasin, dan Mukid, M, A., 2014. Aplikasi Metode Golden Section untuk Optimasi Parameter Pada Metode Exponential Smoothing. Jurnal Goussian, Vol. 3, No.4, pp.605-614.
[3] Bidangan, J., Purnamasari, I., dan Hayati, N, M., 2016. Perbandingan Peramalan Metode Double Exponential Smoothing Satu Parameter Brown dan Meotde Double Exponential Smoothing Dua Parameter Holt. Jurnal Statistika, Vol. 4, No. 1.
[4] Subagyo, Pangestu., 1986. Forecasting Konsep dan Aplikasi. Edisi Kedua. Yogyakarta: BPFE.
[5] Montgomery, D.C., C.L. Jennings, & M.Kulahci., 2008. Introduction to Time Series Analysis and Forecasting. New Jersey: John Wiley & Sons.Inc.
[6] Kachru, Upendra., 2007. Production and Operations Management: Text and Cases. First Edition. New Delhi: Exel Books.
[7] Kumar, Anil. S, & Suresh. N., 2009. Operations Management. New Delhi: New Age International (P) Limited.
[8] Makridakis, S., Wheelwright, S.C., McGee, V.E., Andriyanto, U.S (Penerjemah), & Basith, A (Penerjemah)., 1988. Metode dan Aplikasi Peramalan. Edisi Kedua Jilid 1. Jakarta: Erlangga.
[9] Bazaraa, M.S. & C.M. Shetty., 1990. Nonlinear Programming : Theory and Algorithms. New York: John Wiley & Sons.
[10] Saputra, N, D., Aziz, A., dan Harjito, B., 2016. Parameter Optimization of Brown’s and Holt’s Double Exponential Smoothing Using Golden Section Method for Predicting Indonesian Crude Oil Price (ICP). Proc. Int. Conf. on Information Tech., Computer, and Electrical Engineering (ICITACEE),pp.356-360.
[11] Lewis, C.D., 1982. International and Business Forecasting Methods. London: Butterworths.
[12] Hartono., 2008. Statistik Untuk Penelitian. Edisi Revisi. Yogyakarta: Pustaka Pelajar.
[13] Sugiyono., 2015. Statistika Untuk Penelitian. Bandung: Alfabeta.
[14] Hadi, Sutrisno., 2017. Statistik. Edisi Revisi. Yogyakarta: Pustaka Pelajar.
[15] Walpole, R.E., Myers, R.H., Myers, S.L., & Ye Keying., 2007. Probability & Statistics for Engineers & Scientists. Eighth Edition. New Jersey: Pearson Prentice Hall.
[16] Kementrian Energi dan Sumber Daya Mineral Republik Indonesia, 2017. Harga Minyak Mentah Indonesia [Online]
Available at: http://statistik.migas.esdm.go.id/ index.php?r=hargaMinyakMentahIndonesia/index. [Accessed 16 September 2017]
[17] Badan Pusat Statistik Indonesia, 2017. Ekonomi dan Perdagangan [Online]
Available at: https://www.bps.go.id/.[Accessed 08 Juni 2017]
Published
2018-04-16
Section
Technology Information Article