Implementasi Algoritma Backpropagation Prediksi Kegagalan Siswa Pada Mata Pelajaran Matematika

  • Melladia Melladia Universitas Nahdlatul Ulama Sumatera Barat
  • Iis Roza Mardani Universitas Nahdlatul Ulama Sumatera Barat
Keywords: Backpropagation Algorithm, Mathematics, Prediction


Students become those who can advance the nation. Schools and teachers are very helpful in creating smart and competent students. But often found students who fail, one of which is in the eyes of mathematics. With problems with students Mathematics study researchers want to help solve problems by using predictions on math subjects. In this study the researchers chose the object of research, namely in Padang State Middle School 39. This is quite a problem for students when teaching and learning mathematics subjects. Students do not understand mathematics and this problem will make students' grades decrease. By using student value data, a model is designed to predict students against mathematics subjects. The model uses the backpropagation algorithm. Data variables are taken from students' mathematical currency data, namely assignment 1, assignment 2, average, mid-semester and final semester grades. The data generated is 1 semester data and the number of students predicted is 30 students. The prediction results using the best model are training pattern data 5-2-1 with EPOCH process = 58 and MSE achievement when payment with MSE = 0,00989892 with an accuracy of 99,9901011. it can be cited that the backpropagation algorithm can be used to predict student errors in the eye Mathematics lessons as a guide for teachers


[1] Allaf Omaima N. Ahmad et al, 2012. “Artificial Neural Networks for Iris Recognition System: Comparisons between Different Models, Architectures and Algorithms”. International Journal of Onformation and Communication Technology Research.
[2] Anike Marleni et al, 2012. “Pengembangan Sistem Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Dokter Keluarga Menggunakan Backpropagation”. Seminar Nasional Teknologi dan Komunikasi (SENTIKA).
[3] Che Zhen-Guo et al, 2011. “Feed-Forward Neural Networks Training: A Comparison Between Genetic Algorithm and Back-Propagation Learning Algorithm”. International Journal of Innovative Computing, Information and Control..
[4] Dahriani Hakim Tanjung, 2015. “Jaringan Syaraf Tiruan dengan Backpropagation untuk Memprediksi Penyakit Asma”. Citec Journal.
[5] Devi Ch.Jyosthna et al, 2012.”ANN Approach for Weather Prediction Using Backpropagation”. International Journal of Engineering Trens and Technology.
[6] Fithri D.L, 2013. “Deteksi Penyakit pada Daun Tembakau dengan Menerapkan Algoritma Artificial Neural Network”. Jurnal SIMETRIS.
[7] Gupta Arti and Shreevastava, 2011. “Medical Diagnosis using Backpropagation Algorithm”. IJETAE.
[8] Kusuma Intan Widya, 2011. “Aplikasi Model Backpropagation Neural Network untuk Perkiraan Produksi Tebu pada PT. Perkebunan Nusantara IX”. Proseding.
[9] Zekson Arizona Matondang, 2013. “Jaringan Syaraf Tiruan dengan Algoritma Backpropagation untuk Penentuan Kelulusan Sidang Skripsi”. Pelita Informatika Budi Darma
Artikel Teknologi Informasi